A matrix Hilbert transform in Hermitean Clifford analysis
نویسندگان
چکیده
منابع مشابه
On primitives and conjugate harmonic pairs in Hermitean Clifford analysis
The notion of a conjugate harmonic pair in the context of Hermitean Clifford analysis is introduced as a pair of specific harmonic functions summing up to a Hermitean monogenic function in an open region Ω of C. Under certain geometric conditions on Ω the conjugate harmonic to a given specific harmonic is explicitly constructed and the potential or primitive of a Hermitean monogenic function is...
متن کاملFischer Decompositions in Euclidean and Hermitean Clifford Analysis
Euclidean Clifford analysis is a higher dimensional function theory studying so–called monogenic functions, i.e. null solutions of the rotation invariant, vector valued, first order Dirac operator ∂. In the more recent branch Hermitean Clifford analysis, this rotational invariance has been broken by introducing a complex structure J on Euclidean space and a corresponding second Dirac operator ∂...
متن کاملThe Howe Dual Pair in Hermitean Clifford Analysis
Clifford analysis offers a higher dimensional function theory studying the null solutions of the rotation invariant, vector valued, first order Dirac operator ∂. In the more recent branch Hermitean Clifford analysis, this rotational invariance has been broken by introducing a complex structure J on Euclidean space and a corresponding second Dirac operator ∂J , leading to the system of equations...
متن کاملGeneralized multidimensional Hilbert transforms in Clifford analysis
During the last fifty years, Clifford analysis has gradually developed to a comprehensive theory offering a direct, elegant, and powerful generalization to higher dimension of the theory of holomorphic functions in the complex plane. In its most simple but still useful setting, flat m-dimensional Euclidean space, Clifford analysis focusses on the so-called monogenic functions, that is, null sol...
متن کاملGel’fand-Tsetlin procedure for the construction of orthogonal bases in Hermitean Clifford analysis
In this note, we describe the Gel’fand-Tsetlin procedure for the construction of an orthogonal basis in spaces of Hermitean monogenic polynomials of a fixed bidegree. The algorithm is based on the Cauchy-Kowalewski extension theorem and the Fischer decomposition in Hermitean Clifford analysis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2008
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2008.03.043